Heterogeneous flow¶
The best way to run foxes
calculations on heterogeneous background flow fields is by providing them in netCDF
format. They should contain the following coordinates:
A state coordinate, e.g.
Time
(expected by default) orstate
, or similarA height coordinate, e.g.
height
(expected by default) orh
, or similarA
y
coordinate, e.g.UTMY
(expected by default) ory
, or similarA
x
coordinate, e.g.UTMX
(expected by default) orx
, or similar
The file may contain any kind of foxes
variables as data fields, e.g.:
Wind speed data, e.g.
WS
(expected by default, if claimed as output variable),ws
or similarWind direction data, e.g.
WD
(expected by default, if claimed as output variable),wd
or similarTurbulence intensity data, e.g.
TI
(expected by default, if claimed as output variable),ti
or similarAir density data, e.g.
RHO
(expected by default, if claimed as output variable),rho
or similar
All data must depend on the state coordinate, and may depend on the others.
These are the required imports for this example:
In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import foxes
import foxes.variables as FV
import foxes.constants as FC
One very simple example for netCDF
type data is provided in the static data, under the name wind_rotation.nc
. It contains two states, two heights, and simple 2 x 2 horizontal data that describes identical wind speeds at all four corner points associated with different wind direction values. It can be loaded as follows:
In [2]:
states = foxes.input.states.FieldDataNC(
data_source="wind_rotation.nc",
states_coord="state",
x_coord="x",
y_coord="y",
h_coord="h",
time_format=None,
output_vars=[FV.WS, FV.WD, FV.TI, FV.RHO],
var2ncvar={FV.WS: "ws", FV.WD: "wd"},
fixed_vars={FV.RHO: 1.225, FV.TI: 0.1},
pre_load=True,
bounds_error=False,
)
States 'FieldDataNC': Reading data from '/home/jonas/gits/wakes/foxes/foxes/data/states/wind_rotation.nc'
Note that it is recommended that the states
object should be created outside the DaskRunner
when working with NetCFD input.
Now back to our example. Let’s place a simple 3 x 3 grid wind farm inside the data domain, which is a rectangle between (0, 0)
and (2500, 2500)
:
In [3]:
farm = foxes.WindFarm()
foxes.input.farm_layout.add_grid(
farm,
xy_base=np.array([500.0, 500.0]),
step_vectors=np.array([[500.0, 0], [0, 500.0]]),
steps=(3, 3),
turbine_models=["NREL5MW"],
verbosity=0,
)
The streamline following wakes are realized by selecting a wake frame
that is an instance of foxes.models.wake_frames.Streamlines
, e.g. the model streamlines_100
in the model book. This model has a streamline step size of 100 m:
In [4]:
algo = foxes.algorithms.Downwind(
farm,
states,
rotor_model="grid16",
wake_models=["Jensen_linear_k007"],
wake_frame="streamlines_100",
chunks={FC.STATE: 1000, FC.POINT: 4000},
verbosity=0,
)
We run the algorithm, once explicitely for calculating the wind farm data, and once implicitely when creating horizontal flow plots:
In [5]:
farm_results = algo.calc_farm()
fr = farm_results.to_dataframe()
print(fr[[FV.WD, FV.AMB_REWS, FV.REWS, FV.AMB_P, FV.P]])
o = foxes.output.FlowPlots2D(algo, farm_results)
for fig in o.gen_states_fig_xy(
FV.WS,
resolution=10,
figsize=(8, 8),
quiver_pars=dict(angles="xy", scale_units="xy", scale=0.07),
quiver_n=15,
xmin=0,
xmax=2500,
ymin=0,
ymax=2500,
):
plt.show()
plt.close(fig)
WD AMB_REWS REWS AMB_P P
state turbine
0 0 201.158092 7.491089 7.491089 1474.211367 1474.211367
1 208.044994 7.673386 7.673386 1580.523022 1580.523022
2 214.523994 7.960601 7.960601 1748.171047 1748.171047
3 218.242345 6.867297 6.867297 1127.597810 1127.597810
4 222.297880 7.283373 7.283373 1352.715530 1352.715530
5 225.899315 7.731909 7.731909 1614.607085 1614.607085
6 236.751304 6.932726 6.932726 1156.958672 1156.958672
7 237.139685 7.375640 7.375640 1406.547918 1406.547918
8 237.484049 7.818854 7.818854 1665.347000 1665.347000
1 0 20.311353 6.703701 6.703701 1054.871543 1054.871543
1 26.259090 6.995899 6.995899 1185.898485 1185.898485
2 31.676969 7.357075 7.357075 1396.122949 1396.122949
3 44.537113 5.352448 5.352448 521.748653 521.748653
4 47.447853 5.960030 5.960030 724.421405 724.421405
5 49.815208 6.580130 6.580130 998.581195 998.581195
6 75.462887 5.352662 5.352662 521.621921 521.621921
7 72.552147 5.960214 5.960214 724.363478 724.363478
8 70.184792 6.580285 6.580285 998.552663 998.552663