iwopy.interfaces.pymoo.problem.SingleObjProblem¶
- class iwopy.interfaces.pymoo.problem.SingleObjProblem[source]¶
 Bases:
ProblemWrapper around the pymoo problem for a single objective.
At the moment this interface only supports pure int or pure float problems (not mixed).
- Parameters:
 problem (iwopy.core.Problem) – The iwopy problem to solve
vectorize (bool, optional) – Switch for vectorized calculations, wrt population individuals
- problem¶
 The iwopy problem to solve
- Type:
 iwopy.core.Problem
- __init__(problem, vectorize)[source]¶
 - Parameters:
 n_var (int) – Number of Variables
n_obj (int) – Number of Objectives
n_ieq_constr (int) – Number of Inequality Constraints
n_eq_constr (int) – Number of Equality Constraints
xl (np.array, float, int) – Lower bounds for the variables. if integer all lower bounds are equal.
xu (np.array, float, int) – Upper bounds for the variable. if integer all upper bounds are equal.
vtype (type) – The variable type. So far, just used as a type hint.
Methods
__init__(problem, vectorize)- param n_var:
 Number of Variables
bounds()do(X, return_values_of, *args, **kwargs)evaluate(X, *args[, return_values_of, ...])finalize(pymoo_results[, verbosity])Finalize the problem.
has_bounds()has_constraints()ideal_point(*args[, use_cache, set_cache])nadir_point(*args[, use_cache, set_cache])name()pareto_front(*args[, use_cache, set_cache])pareto_set(*args[, use_cache, set_cache])Attributes
n_constr- __init__(problem, vectorize)[source]¶
 - Parameters:
 n_var (int) – Number of Variables
n_obj (int) – Number of Objectives
n_ieq_constr (int) – Number of Inequality Constraints
n_eq_constr (int) – Number of Equality Constraints
xl (np.array, float, int) – Lower bounds for the variables. if integer all lower bounds are equal.
xu (np.array, float, int) – Upper bounds for the variable. if integer all upper bounds are equal.
vtype (type) – The variable type. So far, just used as a type hint.